

CLOUD AND SYSTEM INGERATION

SOLUTIONS

RESEARCH

CONLETH KENNEDY

OCTOBER 5TH, 2019

STUDENT NUMBER: C00172853

LECTURE: GREG DOYLE

1

Contents
1 Table of Figures .. 2

2 Abstract .. 3

3 Introduction ... 4

4 Business Problem(s).. 5

4.1 Mainframe reliance.. 5

4.2 Client Integration ... 5

4.3 Data Accessibility ... 6

5 Possible Solution Ideas ... 7

5.1 Buy Over Build ... 7

5.2 Point to Point Integration... 8

5.3 Middleware ... 9

5.4 Message Orientated Middleware ... 10

5.5 Service Orientated Architecture ... 11

5.6 Cloud Computing Platforms ... 12

6 Possible Technologies ... 13

6.1 Azure ... 13

6.2 AWS ... 14

6.3 AWS Lambda ... 14

6.4 Kafka.. 15

6.5 Kinesis ... 16

6. 6 IBM WebSphere MQ ... 17

6 .7 IBM Integration Bus (IIB) ... 18

6.8 MuleSoft .. 19

6.9 QlikView .. 19

7 Testing.. 20

7.2 Junit... 20

7.3 N-Unit .. 20

8 Conclusion .. 21

9 References/ Bibliography .. 22

2

1 Table of Figures
Figure 1.Point To Point .. 8

Figure 2.Middleware architecture.. 9

Figure 3. Message Oriented Middleware ... 10

Figure 4. Service Oriented Architecture ... 11

Figure 5. Cloud Computing .. 12

Figure 6. Azure .. 13

Figure 7. AWS .. 14

Figure 8. Kafka ... 15

Figure 9. AWS Kinsis .. 16

Figure 10. MQ Architecture ... 17

Figure 11. IIB architecture.. 18

Figure 12. Mulesoft architecture ... 19

3

2 Abstract
Integration has always been one of the most complex challenges in the IT industry over the last 40 years,

as the digital age is upon us and computing has become more affordable for the average person the

number of devices and data has grown exponentially as expected. The necessity of these applications and

devices to communicate efficiently is important. We have never been in such a connected world as we

have today with the access to high-speed broadband and the cost of cheap storage the accessibility of

data and information to the public in comparison to 10 years ago is something to behold.

The goal of this project is to explore the different means and methods of integration that are being used
more commonly in the market today, examine these practices in live software ecosystems and evaluate
how they run and interact with other systems and compare the overall implementation.

4

3 Introduction
At Unum over 36 million lives are protected worldwide. The company has a focus of helping people

through difficult times by supplying income protection, cancer, vision and dental insurance etc. Unum use

a business to business model which for the most part only target clients with over 200+ employees.

Typically the customer is billed at payroll for the coverage. Income protection is extremely important in

the USA, two thirds of people live from paycheck to paycheck without income protection and could face

extreme poverty due to the lengthy process of unemployment. Unum accommodates short and longer

terms of unemployment due to illness and injury etc. This makes these payments much faster than

government services.

In recent years within the insurance market in the USA technology seems to be the driving factor on the

evolution of the insurance market. As part of Unum’s digital business approach, Human Resource Connect

(HR Connect) is one of the most innovative solutions the company has produced. The current version of

the solution has a unique integration with Workday which has given the company an advantageous lead

on competitors. This integration allows an individual to submit a leave of absence into the workday system

which will then connect with Unum’s API’s to submit a claim in tandem with the leave of absence with no

effort from the client. Workday itself has around 2000 large customers and 135 of them being listed in

the Fortune 500 companies. This has allowed Unum to partner with some very prestigious clients from a

business and technological aspect and hopefully created long term relationships that can generate large

amounts of revenue.

The key reason as to why Unum was able to capture this new business was due to integration with a large

cloud solution. From this success story Unum has taken an API first approach to connecting with their

customers. Five years ago, a customer was happy to fill out paper forms in order to make a claim for a

leave of absence but in today’s digital world, paper is not thought to be the first method of interacting

with a large multinational company. Unum have adhered to this need and moved focus to the theme of

integration and cloud.

5

4 Business Problem(s)
The three main challenges Unum face today and are determined to solve is

1. Reliance, cost and support of legacy systems and data storage
2. Integration with clients
3. Accessibility to data

4.1 Mainframe reliance
Unum is a company that was founded in 1848 and over that long history of business the company has
went through numerous mergers and acquisition of many small to medium insurance providers. Due to
this they have acquired a 20% control of the US insurance market for disability insurance which has
generated a lot of revenue but also complicated their internal processes and systems due to laws and
regulations over many states and countries. The laws have led to complex business logic to be integrated
into legacy systems and due to market demand, it has led to many products to sit on top of these systems.
As - Menge, F. (2007). States “First, it is nearly impossible to develop one huge application which performs
all business functions of a typical enterprise because there are far too many requirements.”

These systems were implemented in the late 1970’s and were a huge investment for the company due to
the cost of memory and storage at that time. These systems are the backbone of the company and have
served the company well over the years but as they become older and older developers retired, upskilled
or left. With a lack of skills in these technologies with recent software graduates they have left Unum in a
difficult situation.
These systems continue to work today and are efficient at what they do but has a large price tag associated
for support and testing. In recent years the company has adopted some of the newer cloud systems such
as Salesforce, Fineos and Microsoft Dynamics with the intention of managing some of the business
processes better and retiring older systems. Although there is still a need for mainframe to administer the
policy information. This eventually needs to be changed without impacting the company’s growth goals
in an ever-evolving market.

4.2 Client Integration
Now to address the second issue, customer integration has also been a challenge for the company over
the years. This typically involved the client gathering employee information into large excel sheets which
were transferred over to Unum systems and mapped into mainframe by homegrown mapping software
on a monthly or bi-weekly basis. This process involved a lot of specialized coding for specific keywords
and was often prone to failure by misspellings, alternative wording etc. Also, another issue being that it
was not on demand for customers to make updates and requests when they see fit and typically didn’t
follow industry standards of how integration should be implemented. The client typically was notified by
email or phone call that the structure of the document did not match the systems criteria and would have
to be changed. This was not a good customer experience for the client and a poor turnaround time in
comparison to what could be done with some of today’s software.

6

4.3 Data Accessibility
Due to the many acquisitions as specified above this has meant that Unum have also inherited a multitude

of data stores and business workflows. Over the years due to cost, planning, requirement changes and

several other reasons data is now spread across the organization and no one fully understands the entire

architecture alone due to the complexity. Along with this many of the integrations to these data sources

we’re not reusable. Analytics and Data Science are now important pieces to the puzzle today to find where

a business can improve, and customers now expect more accessibility to their data.

7

5 Possible Solution Ideas

5.1 Buy Over Build
In recent years in Unum the option of buy over build has been a talking point when faced with a challenge

or idea. Previously Unum had been known for being a Microsoft software house (still some truth to this

today) and typically looked inward for solutions from their IT team opposed to external to the

marketplace. The disadvantage of the build approach was that the design, build and test phase were

undertook by the company. This costed the company the time to build it while also taking on support of

the solution after it had been delivered.

The buy over build approach allowed the company to look externally and do some research on the current

tools in the market to see how they performed compared to competitor’s along with the opportunity to

have the infrastructure in the cloud. Whilst the buy approach seems attractive it does come with its

drawbacks; some solutions can be quite rigid and not allow much customization along with this, updates

of the software could be pushed resulting in bugs which are out of your control. Also, one other

disadvantage was tying the organization into an expensive long-term contract with other companies while

introducing specific training for the employees in the buyer company to learn the new software from a

usability and IT perspective. The procurement process through legal red tape can also be an issue.

8

5.2 Point to Point Integration
Point to point or synchronous integration is the simplest form of integration between two systems. This

is where one system makes a direct connection to send or receive information from another. These

integrations are typically easy to implement using protocols such as HTTP requests. They allow for low

short-term risk and do not require a specialist skill set and there is typically a greater degree of control

over the API by the application development team. With that there are certain downsides to this method

of integration. Over time as the organization grows there is a high chance more and more applications

require more information from other systems as requirements grow. In times of outage of these systems

it can cost the company a lot of revenue and costly fees in support and audit. Along with this there is lower

reusability of API’s across the company also and different implementation methods due to language or

technology will drive up costs over time.

Figure 1.Point to Point

9

5.3 Middleware
The idea of middleware and ESB’s (Enterprise Service Bus) is still a relatively new concept in the software

development world as - Menge, F. (2007). states “A typical scenario is that an enterprise runs hundreds

or thousands of applications, which could be custom built, acquired from a third party or parts of legacy

systems”. This follows the exact problem Unum faces today as the applications and systems within the

company are required to communicate but the problem is most of them are different platforms, data

format or language. These systems should not be closely coupled to minimize complexity and dependence

on each other whilst keeping down cost and costume code. Along with this many connections between

multiple systems without one source of logging could be a nightmare to debug and trace the source of

failures. The tricky part is the external piece as one size does not fit all in the software world “Enterprise

Application Integration (EAI), becomes even more interesting if applications of external business partners

are to be integrated.” It’s important that any connection made to an external source allows an

asynchronous connection this means that we can receive messages and data and not require a response

within the transaction this allows the company to take the incoming requests and process them as they

see fit and return a response later.

Figure 2.Middleware architecture

10

5.4 Message Orientated Middleware
Message orientated middleware is the idea of a system used specifically as a routing service for messages

within an enterprise to decouple and allow systems to easily communicate. This means that software

teams can simply add a message to a location and not worry about whether the receiver of the message

is currently able to receive it. This system typically allows for a few different methods of how messages

can be submitted to a receiver. The one drawback of this is that it only can perform delivery and routing

tasks and not transformation. This means that an enterprise should set a standard of what format the

messages should be and the development teams should ensure that the message is transformed into that

format before committing to a location.

Figure 3. Message Oriented Middleware

11

5.5 Service Orientated Architecture
The Service Oriented Architecture (SOA) is the concept of structuring a company’s API’s based on the

services they provide. The idea of this is that the organization builds up a portfolio of web services typical

in the REST (Representational State Transfer) or SOAP (Simple Object Access Protocol) format this allows

the services to be reusable for other projects or to be remodeled if the needs of the company change over

time with little effort and speed.

It’s important these services follow one standardized data format so that systems can communicate

simply between legacy and newer systems, typically a data format such as XML (Extensible Markup

Language) or JSON (JavaScript Object Notation) is chosen. Due to SOA being introduced it allows for great

scalability and allows developers to distribute applications to multiple locations/departments within an

organization and multiple businesses on the internet.

Typically, these services are released in a server farm in a load balanced environment this should allow

services to handle a high amount of network traffic with ease along with gateway software to allow for

security, authorization and routing of requests. The key principle of this model is that the services are

reusable, reconfigurable and scalable this allows the company to reuse existing services where possible

that they know are reliable and hence a better finished project with better versatility and greater speed

to market.

Figure 4. Service Oriented Architecture

12

5.6 Cloud Computing Platforms
In recent years the idea of cloud computing has been a hot topic in meeting rooms and web conferences
but what does cloud computing provide? The idea of Cloud computing is to provide one of three services
over the internet these services are known as SaaS (Software as a service), PaaP (Platform as a service),
IaaS (Infrastructure as a service) or all of them in tandem and the customer is typically charged by usage.

This allows smaller companies who are starting off to not require a large amount of capital to invest in
expensive hardware and software before they can release a finished product instead, they can move their
code into the cloud an utilise some of the tools and configurations provided by companies such as Amazon
or Microsoft and scale as the software’s user base grows.

The advantage of this is that you can focus on the important parts of the software requirements and
infrastructure support, versioning, security and load balancing is handled by someone else. This frees up
your developers to focus on solving the business problems. Along with this it enables your business to
dabble in concepts such as machine learning and analytics that you have not had the resources for as
these services are provided within the platforms.

Figure 5. Cloud Computing

13

6 Possible Technologies
Unum as stated above is primarily a .net hub although it has taken a liking to a more open source approach

in recent years. This allows the project to look towards two languages/tool chains being C# and Java. Both

languages have similar support and capabilities with one major stand out difference of Java having the

advantage of being cross platform due to the Java Runtime Environment (JRE) but otherwise both

languages are the two most widely used languages in Unum. This should be considered when choosing

other components of the project to consider that each language has the necessary capabilities to

communicate with each other.

6.1 Azure
Azure is Microsoft’s cloud computing platform that allows developers to build, test, deploy and process

code in the cloud while also providing services such as virtual machines for Windows and Linux and data

storage. Azure supports a wide variety of Microsoft specific products such as Team Foundation Server

(TFS), Xamarin, Windows and PowerShell which are all products that Unum currently use today along with

the bonus of support for languages such as Python, Java, php and Node JS. The platform also allows for a

range of different storage such as relation style databases, NoSQL and unstructured BLOB (binary large

object).

The platform also provides a messaging queue service for async communication called Microsoft Azure

Service Bus which will be of use and caters towards the SOA model. One of the unique aspects of Azures

functionality is Azure functions which consists of a serverless tool which allows a user to execute a piece

of code on the cloud platform without the worry of resource management this means the customer does

not need to worry about scalability and pays by the usage. The service also supports a wide variety of

languages and handles security along with giving performance metrics on your code.

Figure 6. Azure

14

6.2 AWS
AWS is another cloud computing platform which provides much of the same services as Azure, but the

one main difference is the maturity of the platform. The platform has many more custom-built tools such

as S3 for storage which supports multiple different no SQL databases such as Dynamo DB, Aurora and

relational databases such as MySQL which can work well with AWS Athena for fast scalable serverless

querying. EC2 is their computing platform which allows a user for a secure, scalable way of obtaining

servers for a project, the platform allows you to pick how many servers you need and what OS at the

touch of a button. The platform has data streaming software such as Apache Kafka and AWS Kinesis.

Elastic Bean Stalk is also a useful tool for deployment of web applications.

6.3 AWS Lambda
AWS Lambda is a serverless function within the AWS platform, lambda allows a user to run a software

function in the cloud based on events that are passed to a lambda function. These events typically come

through AWS gateway. The main selling point of this method of code execution is that everything is

handled by AWS irrespective of the language and platform, AWS has configured lambda to include all the

necessary runtime environments and packages along with this the service will scale automatically and you

will only pay by usage.

One of the useful features of lambda is the layers that you can configure and use with your lambda

functions this allows you to configure additional libraries, runtimes and dependencies as part of your

function. These layers can be shared with an organization or the entire AWS community if the user

chooses meaning that there is a community of useful layers that can be reused as the platform grows.

Figure 7. AWS

15

6.4 Kafka
Apache Kafka is an open source streaming, messaging and data transformation software made by

LinkedIn. The software uses the publish and subscribe model for data transfer. Kafka listens for incoming

messages from publishers for some period of time, publishers send a piece of data called a topic. A topic

can be consumed by many different consumers all with different purposes. Data is typically processed in

real time but can be configured to run in batch also.

The data is typically divvied into partitions and the user decides the order of the data. The main issue of

Kafka is getting data into a Kafka cluster, these are usually fed from connectors such as HDFS (Hadoop file

system) or a relational database and the second issue is processing. How the software scales are by using

multiple instances of a Kafka cluster. Kafka is also very reliable for data delivery as it will store the message

within the system in the case where a consumer is not available and can pick up where it last left off.

Lastly the system can also have stream processors, stream processors can do transformation on data in

order to create new topics.

Figure 8. Kafka

16

6.5 Kinesis
Amazon Kinesis is a data streaming tool that can connect to hundreds of thousands of data sources with

low latency. The platform allows for real-time streaming of data of many different formats such as video,

images, audio and data such as log files. The ability to stream in real time can be a huge advantage as you

can make decisions almost instantly instead of waiting on large batches to run. The application

automatically handles your infrastructure as it runs and therefore is it able to take it such volumes of data

without any effect on performance. Typically, users will use Kinesis to run analytics or machine learning

within the AWS platform to make clever business decisions or to just give a health check on a system or

how sales might be preforming on a real time basis. The tool can be complemented with either EC2 or

Lambda to carry out processing tasks.

Figure 9. AWS Kinesis

17

6. 6 IBM WebSphere MQ
Unum’s current tool for messaging and middleware is IBM MQ. It is the most used messaging system in

the industry today with it having a hold on 70% of the market. This software product follows the

MOM(Message Orientated Middleware) model of messaging. Some of the main advantages of using MQ

is that it is cross platform with the use of channels this is extremely useful in a large enterprise. The

software is queue based where you define a sender and receiver queue on the queue manager.

This system works async and takes care of all storage logs and communication. The reason why this

software is so popular is its ability to integrate well with mainframe for transfer of data. The sender and

receiver applications just need to know the name of the queues and agree on the message format. The

software supplies its own API for use with the 6 functions being

● Connect to Queue manager

● Open queue

● Put or get messages

● Close Queue

● Commit rollback

● Disconnect

Figure 10. MQ Architecture

18

6 .7 IBM Integration Bus (IIB)
IBM Integration bus is an enterprise series bus used for routing, message enrichment and transformation

processes between systems regardless of message format or protocol used. The product is typically

complemented with IBM MQ as IIB’S strong message transformation support works well with preparing

the data for another system.

Typically, the most common use case within Unum is to get data from the mainframe into MQ where IIB

picks it up and converts the message to a friendlier format such as xml or json. IIB also supports a range

of inputs such as SOAP, REST, HTTP, File and TCP/IP. Along with this many different data formats such as

C, Cobol, XML, EDI and HIPAA which are all commonly used within the company.

The tool supports a range of different methods to transform data using a graphical map interface, a

language known as ESQL (Extended Structured Query Language), Java and XSL (Extensible Stylesheet

Language). The tool also comes with a range of connectors for tools such as Kafka, Salesforce, WTX

(WebSphere Transformation Extender) and .NET. The tool also can quickly create rest API’s to mainframe

by proxy using swagger documents. Many of Unum’s API’s are currently created in this tool with all ready

predefined enterprise logging system. This tool does require a license.

Figure 11. IIB architecture

19

6.8 MuleSoft
MuleSoft is a lightweight ESB based on the java language. The central component of Mule is a service

container for so called Universal Message Objects (UMOs). The key selling point of MuleSoft is the number

of connectors the software has in the case, that there is a custom connection required MuleSoft provide

a connector SDK to develop it. This means Mule enables easy integration with any type of system. The

data formats are like that of IIB supporting XML, Json etc. MuleSoft allows a component-based

architecture which enables significant component reuse.

Figure 12. Mulesoft architecture

6.9 QlikView
QlikView is a business intelligence and analytics tool that loads all data in memory in order to allow for

quick and easy data manipulation. The tool provides multiple different methods to consume data such as

ODBC (Open Database Conductivity) connector which allows QlikView to connect to a wide variety of

databases such as Teradata, Oracle, MySQL and DB2. The tool also has the ability to have connections to

NoSQL databases such as MongoDb. Lastly the tool can consume REST and SOAP API’s. Once the data has

been loaded into the application the tool can create charts and trend graphs or simply display the data in

a list. Again, Unum owns a license to this piece of Software.

20

7 Testing

7.2 Junit
J-unit is an open source testing framework for the Java programming language. Junit allows a developer

to test induvial pieces of code by creating test methods called unit tests. Unit tests include simple tests of

a method of passing in an input and asserting the expected output if at any point where an unhandled

exception or assertion failure occur the test will either be marked as failed or skipped. The goal of when

writing a test for an application is to achieve 100% branch coverage of a class while also testing the

functionality with realistic scenarios. This gives the developer the ability to run a series of checks at the

click of a button and get a health check on the code and see if new code has had a negative effect on

existing code.

7.3 N-Unit
N-Unit is the C# version of J-unit. It enables a developer to do the same as J-unit along with providing such

functionality such as test suites which let you organize your tests based on a category. Also, can use

annotations to run pre and post conditions like J-unit.

21

8 Conclusion
As time has progressed and the requirement for better conductivity between systems it seems as though

point to point integration in large enterprises seem to be unfeasible and unmaintainable in the long term.

As leading technology companies have built middleware solutions for integrations across a large network

and cloud providers have built real time connectors to enable companies to build and scale their solutions.

It appears Unum have no choice but to jump on the bandwagon in order to enable them to compete with

rivals as these technologies will inhibit greater speed to market and the automatic ability to scale at the

click of a button or involuntary. Having on premises infrastructure may give the company more control

and just an initial cost of implementation and maintenance costs of the servers but standing up

infrastructure takes time and human resource while losing out on new toolsets and perks of being on a

cloud platform.

22

9 References/ Bibliography
[1] Takend.com. 2019. ESB vs P2P: Why It’s Finally Time to Ditch P2P. [ONLINE] Available at:

https://www.talend.com/resources/esb-vs-p2p/. [Accessed 01 November 2019].

[2] Falko-Menge. 2007. rapidminer Enterprise Service Bus. [ONLINE] Available at:

https://www.semanticscholar.org/paper/Enterprise-Service-Bus-

Menge/75393c46ab62d8c25d13f79d68ef42e232474b53 . [Accessed 01 November 2019].

[3] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy, Aleksander Slominski. 2019. Status of Serverless

Computing and Function-as-a-Service(FaaS) in Industry and Research. [ONLINE] Available at:

https://arxiv.org/abs/1708.08028 [Accessed 01 November 2019].

[4] Softwareengineeringdaily. 2019. softwareengineeringdaily. [ONLINE] Available at:

https://i0.wp.com/softwareengineeringdaily.com/wp-

content/uploads/2016/08/serverless_webapp.png?resize=730%2C389&ssl=1 . [Accessed 01 November

2019].

[5] Educba.com. 2019. Java vs C#. [ONLINE] Available at: https://www.educba.com/java-vs-c-sharp/ j.

[Accessed 01 November 2019].

[6] Microsoft. 2019.Serverless. [ONLINE] Available at: https://docs.microsoft.com/en-

us/azure/architecture/serverless/code. [Accessed 01 November 2019].

[7] Microsoft. 2019.Azure tools. [ONLINE] Available at: https://azure.microsoft.com/en-us/tools/.

[Accessed 01 November 2019].

[8] data-flair.com. 2019. Kafka Architecture and Its Fundamental Concepts. [ONLINE] Available at:

https://data-flair.training/blogs/kafka-architecture/. [Accessed 01 November 2019].

[9] Bruce Snyder, Dejan Bosanac, and Rob Davies. 2011. Active MQ in Action. [ONLINE] Available at:

https://livebook.manning.com/book/activemq-in-action/chapter-2/25. [Accessed 01 November 2019].

[10] IBM. 2019. Service-oriented architecture (SOA). [ONLINE] Available at:

https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_s

erv_overview.html. [Accessed 01 November 2019].

[12] MuleSoft. 2019. What is mule ESB. [ONLINE] Available at:

https://www.mulesoft.com/resources/esb/what-mule-esb. [Accessed 01 November 2019].

[13] IBM. 2019. MQ Basic architecture. [ONLINE] Available at:

https://www.ibm.com/support/knowledgecenter/en/SS9H2Y_7.5.0/com.ibm.dp.doc/mq_basicarchitect

ure.html [Accessed 01 November 2019].

[14] IBM. 2019. IBM Integration Bus technical overview. [ONLINE] Available at:

https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ab20551_

.htm. [Accessed 01 November 2019].

https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/random_tree.html
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/random_tree.html
https://www.talend.com/resources/esb-vs-p2p/
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/random_tree.html
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/random_tree.html
https://www.semanticscholar.org/paper/Enterprise-Service-Bus-Menge/75393c46ab62d8c25d13f79d68ef42e232474b53
https://www.semanticscholar.org/paper/Enterprise-Service-Bus-Menge/75393c46ab62d8c25d13f79d68ef42e232474b53
https://docs.rapidminer.com/latest/studio/operators/modeling/predictive/trees/random_tree.html
https://arxiv.org/abs/1708.08028
https://i0.wp.com/softwareengineeringdaily.com/wp-content/uploads/2016/08/serverless_webapp.png?resize=730%2C389&ssl=1
https://i0.wp.com/softwareengineeringdaily.com/wp-content/uploads/2016/08/serverless_webapp.png?resize=730%2C389&ssl=1
https://www.educba.com/java-vs-c-sharp/
https://docs.microsoft.com/en-us/azure/architecture/serverless/code
https://docs.microsoft.com/en-us/azure/architecture/serverless/code
https://azure.microsoft.com/en-us/tools/
https://data-flair.training/blogs/kafka-architecture/
https://livebook.manning.com/book/activemq-in-action/chapter-2/25
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.mulesoft.com/resources/esb/what-mule-esb
https://www.ibm.com/support/knowledgecenter/en/SS9H2Y_7.5.0/com.ibm.dp.doc/mq_basicarchitecture.html
https://www.ibm.com/support/knowledgecenter/en/SS9H2Y_7.5.0/com.ibm.dp.doc/mq_basicarchitecture.html
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ab20551_.htm
https://www.ibm.com/support/knowledgecenter/en/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ab20551_.htm

23

[15] Multicloud. 2019. Muti-Cloud. [ONLINE] Available at: https://avinetworks.com/glossary/multi-

cloud/ . [Accessed 01 November 2019].

[16] Amazon. 2019.AWS Kinesis. [ONLINE] Available at: https://aws.amazon.com/kinesis/ . [Accessed 01

November 2019].

[17] Junit. 2019.Junit. [ONLINE] Available at: https://junit.org/junit5/ . [Accessed 01 November 2019].

[18] Nunit. 2019. Muti-Cloud. [ONLINE] Available at: https://nunit.org/ . [Accessed 01 November 2019].

https://avinetworks.com/glossary/multi-cloud/
https://avinetworks.com/glossary/multi-cloud/
https://aws.amazon.com/kinesis/
https://junit.org/junit5/
https://nunit.org/

